2^2a=1/64

Simple and best practice solution for 2^2a=1/64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2^2a=1/64 equation:



2^2a=1/64
We move all terms to the left:
2^2a-(1/64)=0
We add all the numbers together, and all the variables
2^2a-(+1/64)=0
We get rid of parentheses
2^2a-1/64=0
We multiply all the terms by the denominator
2^2a*64-1=0
Wy multiply elements
128a^2-1=0
a = 128; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·128·(-1)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*128}=\frac{0-16\sqrt{2}}{256} =-\frac{16\sqrt{2}}{256} =-\frac{\sqrt{2}}{16} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*128}=\frac{0+16\sqrt{2}}{256} =\frac{16\sqrt{2}}{256} =\frac{\sqrt{2}}{16} $

See similar equations:

| 3x+1x+2=-18 | | 4x-1+2x+5=22 | | 6.50=t-15.50 | | 4y−4=32 | | 40°+3x°+x°=180 | | .2x+7=52 | | 15+15k=20k-20 | | 6=s+3 | | 2x+4(x-2)=-3(4-x)+6 | | -11j=-12j+12 | | 00+75x=1,000–25x4 | | 14p-6=5 | | –10+s=–4s+10 | | -23-2x=10x+8-7x+4 | | 12x+24=19+32x | | -17=v-15 | | 4=2a-4 | | 1x+0=6x+4 | | 3-4x+2=9 | | X+x-18=46 | | -(6h+7+8=-9 | | 9y+2=-7 | | 3-6=6y | | 3(2x+7)=6x+15 | | x+28=-62 | | 4(-3x+5)=-16 | | 3(p+2)=2(p+4) | | 2x-8x+8=2 | | −4n+7=25 | | 3u-34=16+12u | | 3s-4=-6-4s+2 | | 4x+32=3x-19 |

Equations solver categories